Intermolecular domain docking in the hairpin ribozyme

نویسندگان

  • Minako Sumita
  • Neil A. White
  • Kristine R. Julien
  • Charles G. Hoogstraten
چکیده

The hairpin ribozyme is a prototype small, self-cleaving RNA motif. It exists naturally as a four-way RNA junction containing two internal loops on adjoining arms. These two loops interact in a cation-driven docking step prior to chemical catalysis to form a tightly integrated structure, with dramatic changes occurring in the conformation of each loop upon docking. We investigate the thermodynamics and kinetics of the docking process using constructs in which loop A and loop B reside on separate molecules. Using a novel CD difference assay to isolate the effects of metal ions linked to domain docking, we find the intermolecular docking process to be driven by sub-millimolar concentrations of the exchange-inert Co(NH 3) 6 (3+). RNA self-cleavage requires binding of lower-affinity ions with greater apparent cooperativity than the docking process itself, implying that, even in the absence of direct coordination to RNA, metal ions play a catalytic role in hairpin ribozyme function beyond simply driving loop-loop docking. Surface plasmon resonance assays reveal remarkably slow molecular association, given the relatively tight loop-loop interaction. This observation is consistent with a "double conformational capture" model in which only collisions between loop A and loop B molecules that are simultaneously in minor, docking-competent conformations are productive for binding.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inter-domain cross-linking and molecular modelling of the hairpin ribozyme.

The hairpin ribozyme is a small catalytic RNA composed of two helical domains containing a small and a large internal loop and, thus, constitutes a valuable paradigm for the study of RNA structure and catalysis. We have carried out molecular modelling of the hairpin ribozyme to learn how the two domains (A and B) might fold and approach each other. To help distinguish alternative inter-domain o...

متن کامل

Sensing complex regulatory networks by conformationally controlled hairpin ribozymes.

The hairpin ribozyme catalyses RNA cleavage by a mechanism utilizing its conformational flexibility during the docking of two independently folded internal loop domains A and B. Based on this mechanism, we designed hairpin ribozyme variants that can be induced or repressed by external effector oligonucleotides influencing the docking process. We incorporated a third domain C to assimilate alter...

متن کامل

A base change in the catalytic core of the hairpin ribozyme perturbs function but not domain docking.

The hairpin ribozyme is a small endonucleolytic RNA motif with potential for targeted RNA inactivation. It optimally cleaves substrates containing the sequence 5'-GU-3' immediately 5' of G. Previously, we have shown that tertiary structure docking of its two domains is an essential step in the reaction pathway of the hairpin ribozyme. Here we show, combining biochemical and fluorescence structu...

متن کامل

Crystallization and X-ray diffraction analysis of an all-RNA U39C mutant of the minimal hairpin ribozyme.

The hairpin ribozyme is a naturally occurring catalytic RNA composed of two helix-loop-helix domains, A and B, that dock to form the biologically active enzyme. Previously, the crystal structure of the hairpin has been solved as a four-way helical junction that incorporated the U1A protein as an artificial crystal-packing motif [Rupert & Ferré-D'Amaré (2001), Nature (London), 410, 780-786]. Her...

متن کامل

NMR structure of the A730 loop of the Neurospora VS ribozyme: insights into the formation of the active site

The Neurospora VS ribozyme is a small nucleolytic ribozyme with unique primary, secondary and global tertiary structures, which displays mechanistic similarities to the hairpin ribozyme. Here, we determined the high-resolution NMR structure of a stem-loop VI fragment containing the A730 internal loop, which forms part of the active site. In the presence of magnesium ions, the A730 loop adopts a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2013